77 research outputs found

    Harmful freshwater algal blooms, with an emphasis on cyanobacteria.

    Get PDF
    Suspended algae, or phytoplankton, are the prime source of organic matter supporting food webs in freshwater ecosystems. Phytoplankton productivity is reliant on adequate nutrient supplies; however, increasing rates of nutrient supply, much of it manmade, fuels accelerating primary production or eutrophication. An obvious and problematic symptom of eutrophication is rapid growth and accumulations of phytoplankton, leading to discoloration of affected waters. These events are termed blooms. Blooms are a prime agent of water quality deterioration, including foul odors and tastes, deoxygenation of bottom waters (hypoxia and anoxia), toxicity, fish kills, and food web alterations. Toxins produced by blooms can adversely affect animal (including human) health in waters used for recreational and drinking purposes. Numerous freshwater genera within the diverse phyla comprising the phytoplankton are capable of forming blooms; however, the blue-green algae (or cyanobacteria) are the most notorious bloom formers. This is especially true for harmful toxic, surface-dwelling, scum-forming genera (e.g., Anabaena, Aphanizomenon, Nodularia, Microcystis) and some subsurface bloom-formers (Cylindrospermopsis, Oscillatoria) that are adept at exploiting nutrient-enriched conditions. They thrive in highly productive waters by being able to rapidly migrate between radiance-rich surface waters and nutrient-rich bottom waters. Furthermore, many harmful species are tolerant of extreme environmental conditions, including very high light levels, high temperatures, various degrees of desiccation, and periodic nutrient deprivation. Some of the most noxious cyanobacterial bloom genera (e.g., Anabaena, Aphanizomenon, Cylindrospermopsis, Nodularia) are capable of fixing atmospheric nitrogen (N2), enabling them to periodically dominate under nitrogen-limited conditions. Cyanobacteria produce a range of organic compounds, including those that are toxic to higher-ranked consumers, from zooplankton to further up the food chain. Both N2- and non-N2-fixing genera participate in mutualistic and symbiotic associations with microorganisms, higher plants, and animals. These associations appear to be of great benefit to their survival and periodic dominance. In this review, we address the ecological impacts and environmental controls of harmful blooms, with an emphasis on the ecology, physiology, and management of cyanobacterial bloom taxa. Combinations of physical, chemical, and biotic features of natural waters function in a synergistic fashion to determine the sensitivity of water bodies. In waters susceptible to blooms, human activities in water- and airsheds have been linked to the extent and magnitudes of blooms. Control and management of cyanobacterial and other phytoplankton blooms invariably includes nutrient input constraints, most often focused on nitrogen (N) and/or phosphorus (P). The types and amount of nutrient input constraints depend on hydrologic, climatic, geographic, and geologic factors, which interact with anthropogenic and natural nutrient input regimes. While single nutrient input constraints may be effective in some water bodies, dual N and P input reductions are usually required for effective long-term control and management of harmful blooms. In some systems where hydrologic manipulations (i.e., plentiful water supplies) are possible, reducing the water residence time by enhanced flushing and artificial mixing (in conjunction with nutrient input constraints) can be particularly effective alternatives. Implications of various management strategies, based on combined ecophysiological and environmental considerations, are discussed

    Global WEIRDing: Transitions in Wild Plant Knowledge and Treatment Preferences in Congo Hunter-Gatherers

    Get PDF
    Cultures around the world are converging as populations become more connected. On the one hand this increased connectedness can promote the recombination of existing cultural practices to generate new ones, but on the other it may lead to the replacement of traditional practices and global WEIRDing. Here we examine the process and causes of changes in cultural traits concerning wild plant knowledge in Mbendjele BaYaka hunter–gatherers from Congo. Our results show that the BaYaka who were born in town reported knowing and using fewer plants than the BaYaka who were born in forest camps. Plant uses lost in the town-born BaYaka related to medicine. Unlike the forest-born participants, the town-born BaYaka preferred Western medicine over traditional practices, suggesting that the observed decline of plant knowledge and use is the result of replacement of cultural practices with the new products of cumulative culture

    Characterization of hunter-gatherer networks and implications for cumulative culture

    Get PDF
    © 2017 Macmillan Publishers Limited, part of Spr nger Nature. Social networks in modern societies are highly structured, usually involving frequent contact with a small number of unrelated friends' 1. However, contact network structures in traditional small-scale societies, especially hunter-gatherers, are poorly characterized. We developed a portable wireless sensing technology (motes) to study within-camp proximity networks among Agta and BaYaka hunter-gatherers in fine detail. We show that hunter-gatherer social networks exhibit signs of increased efficiency 2 for potential information exchange. Increased network efficiency is achieved through investment in a few strong links among non-kin friends' connecting unrelated families. We show that interactions with non-kin appear in childhood, creating opportunities for collaboration and cultural exchange beyond family at early ages. We also show that strong friendships are more important than family ties in predicting levels of shared knowledge among individuals. We hypothesize that efficient transmission of cumulative culture 3-6 may have shaped human social networks and contributed to our tendency to extend networks beyond kin and form strong non-kin ties

    Competition for Cooperation: variability, benefits and heritability of relational wealth in hunter-gatherers

    Get PDF
    Many defining human characteristics including theory of mind, culture and language relate to our sociality, and facilitate the formation and maintenance of cooperative relationships. Therefore, deciphering the context in which our sociality evolved is invaluable in understanding what makes us unique as a species. Much work has emphasised group-level competition, such as warfare, in moulding human cooperation and sociality. However, competition and cooperation also occur within groups; and inter-individual differences in sociality have reported fitness implications in numerous non-human taxa. Here we investigate whether differential access to cooperation (relational wealth) is likely to lead to variation in fitness at the individual level among BaYaka hunter-gatherers. Using economic gift games we find that relational wealth: a) displays individual-level variation; b) provides advantages in buffering food risk, and is positively associated with body mass index (BMI) and female fertility; c) is partially heritable. These results highlight that individual-level processes may have been fundamental in the extension of human cooperation beyond small units of related individuals, and in shaping our sociality. Additionally, the findings offer insight in to trends related to human sociality found from research in other fields such as psychology and epidemiology

    Women’s subsistence strategies predict fertility across cultures, but context matters

    Get PDF
    While it is commonly assumed that farmers have higher, and foragers lower, fertility compared to populations practicing other forms of subsistence, robust supportive evidence is lacking. We tested whether subsistence activities—incorporating market integration—are associated with fertility in 10,250 women from 27 small-scale societies and found considerable variation in fertility. This variation did not align with group-level subsistence typologies. Societies labeled as “farmers” did not have higher fertility than others, while “foragers” did not have lower fertility. However, at the individual level, we found strong evidence that fertility was positively associated with farming and moderate evidence of a negative relationship between foraging and fertility. Markers of market integration were strongly negatively correlated with fertility. Despite strong cross-cultural evidence, these relationships were not consistent in all populations, highlighting the importance of the socioecological context, which likely influences the diverse mechanisms driving the relationship between fertility and subsistence

    Environmental controls, oceanography and population dynamics of pathogens and harmful algal blooms: connecting sources to human exposure

    Get PDF
    © 2008 Author et al. This is an open access article distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Environmental Health 7 (2008): S5, doi:10.1186/1476-069X-7-S2-S5.Coupled physical-biological models are capable of linking the complex interactions between environmental factors and physical hydrodynamics to simulate the growth, toxicity and transport of infectious pathogens and harmful algal blooms (HABs). Such simulations can be used to assess and predict the impact of pathogens and HABs on human health. Given the widespread and increasing reliance of coastal communities on aquatic systems for drinking water, seafood and recreation, such predictions are critical for making informed resource management decisions. Here we identify three challenges to making this connection between pathogens/HABs and human health: predicting concentrations and toxicity; identifying the spatial and temporal scales of population and ecosystem interactions; and applying the understanding of population dynamics of pathogens/HABs to management strategies. We elaborate on the need to meet each of these challenges, describe how modeling approaches can be used and discuss strategies for moving forward in addressing these challenges.The authors acknowledge the financial support for the NSF/NIEHS and NOAA Centers for Oceans and Human Healt
    • …
    corecore